skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wenqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cationic polymerization is a powerful strategy for the production of well-defined polymers and advanced materials. In particular, the emergence of living cationic polymerization has enabled pathways to complex polymer architectures inaccessible before. The use of light and electricity as external stimuli to regulate cationic polymerization represents another advance with increasing applications in surface fabrication and patterning, additive manufacturing, and other advanced material engineering. The past decade also witnessed vigorous progress in stereoselective cationic polymerizations, allowing for the dual control of both the tacticity and the molecular weight of vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis and achieving a circular materials economy, cationic polymerization offers unique advantages for generating chemically recyclable polymers, such as polyacetals, polysaccharides, polyvinyl ethers, and polyethers. In this review, we provide an overview of recent developments in regulating cationic polymerization, including emerging control systems, spatiotemporally controlled polymerization (light and electricity), stereoselective polymerization, and chemically recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for the further development of cationic polymerization for researchers in the field of polymer science and beyond. 
    more » « less
  2. Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease. 
    more » « less